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Abstract

A higher order zig-zag plate theory is developed to refine the prediction of the mechanical, thermal, and electric

behaviors fully coupled. Both in-plane displacement and temperature fields through the thickness are constructed by

superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the

thickness is assumed in the out-of-plane displacement field in order to consider transverse normal deformation. Linear

zig-zag form is adopted in the electric potential. The layer-dependent degrees of freedom of displacement and tem-

perature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity con-

ditions as well as bounding surface conditions of transverse shear stresses and transverse heat fluxes. Thus the proposed

theory is not only accurate but also efficient. Through the numerical examples of coupled and uncoupled analysis, the

accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of fully

coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loads combined.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, development of integration of piezo-electric materials to composite structures is paid special

attentions due to their potential applications to vibration suppression, shape control, noise attenuation and

precision positioning. Complexity and full thermo-electric–mechanical coupling of smart composite

structures requires efficient and refined models to predict mechanical behaviors under thermal environ-

ments.

In the early stage of the development of models, classical/first order shear deformation theory has been
employed to predict mechanical behavior of embedded or surface bonded piezo-electric layers (Mindlin,

1968; Tiersten, 1970; Crawley, 1987; Ha et al., 1992; Lee, 1990; Reddy, 1999). However, for the accu-

rate prediction of static and dynamic behavior for general layup configurations of adaptive laminated
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structures, classical and first order shear theory are not adequate. Thus higher order theories with smeared

displacements and layerwise electric potential fields (Mitchell and Reddy, 1995; Franco Correia et al., 2000)

and full layerwise theories (Saravanos et al., 1997) have been developed. The smeared theory is not enough

to describe the deformation behavior through the thickness because it cannot satisfy static continuity
conditions at the interfaces between layers. Layerwise theory can adequately describe the deformation

behavior through the thickness but it is not computationally efficient because it employs a large number of

degrees of freedom which depend upon the number of layers (Reddy and Robbins, 1993, 1994). Carrera

(2003) gives a historical review of the zig-zag theories for multilayered plates and shells.

Constitutive equations of most plate theories developed until now are based on the plane stress

assumption. They include transverse shear deformation effect but neglect transverse normal deformation

effects. It has been well known that the zig-zag pattern of displacement through the thickness under the

plane stress assumption provide accurate prediction of deformations and stresses of laminated plates under
mechanical loadings (Cho and Parmerter, 1992, 1993; Toledano and Murakami, 1987; Di Sciuva, 1987).

However, in thermo-mechanical problem, even in moderate thick plate configurations, the transverse

normal deformation effect cannot be neglected since the effect of out-of-plane thermal deformation is

equally important compared to those of the in-plane thermal deformations (Ali et al., 1999). In addition,

for the complete analysis of adaptive composite laminates under thermal environments, full coupling effects

between thermal–mechanical-electricity should be considered for the reliable analysis. Chattopadhyay and

co-workers (2000) used a finite element model based on the smeared cubic higher order theory to analyze

the smart structures with the full coupling of thermo-mechanical-electricity. However, smeared theories are
not adequate in the prediction of deformation behavior and layerwise models and 3-D solid models are

computationally too expensive. Thus it is still required to develop accurate and efficient model which can

predict the static and dynamic behaviors of smart structures under thermo-electric–mechanical coupled

situations.

In the present study, an efficient and accurate higher order zig-zag theory for smart laminated plates is

developed. To predict reliable deformation behaviors, transverse normal as well as transverse shear

deformations are considered. For the efficient evaluation of the mechanical behaviors, transverse shear

stress conditions are pre-imposed in the displacement field to reduce total active degrees of freedom. The
temperature field is also obtained by superimposing linear zig-zag field into the global smeared cubic field.

The layer-dependent temperature degrees of freedom are suppressed by imposing top and bottom surface

thermal conditions as well as interface transverse heat flux continuity conditions. The formulation includes

full coupling between thermo-mechanical–electric behaviors. Even though the developed theory is a two-

dimensional plate version, full three-dimensional constitutive equations are used for the accurate prediction

of the deformation under thermal and electric loads combined.

The developed theory does not have layer-dependent degrees of freedom of displacement field and

temperature field but it has layer-dependent degrees of freedom for electric potentials in order to describe
arbitrary distributions of electric potential through the thickness of smart structures.
2. Formulation

The Helmholtz free energy may be written as follows and it can be found in the paper of Dokmeci (1980)

and more recently Haozhong et al. (2000):
F ðeij;Ei; hÞ ¼ 1
2
Cijkleijekl � eijkEiejk � 1

2
bijEiEj � kijheij � diEih � 1

2
aTh

2 ð1Þ
In the above equation eij, Ei, and h are the components of the strain tensor, the electric field vector, and the
temperature field vector respectively. The coefficients Cijkl, eijk, and bij correspond to the elastic constants,
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the piezo-electric constants, and the dielectric permittivity. The quantities kij and di are the thermal–

mechanical and the thermal–piezo-electric coupling constants respectively. aT is defined as CE=T0. Here, CE

and T0 are the heat capacity and the initial temperature.

The constitutive equations for fully coupled thermo-mechanical–electric materials are given as,
rij ¼
oF
oeij

¼ Cijklekl � eijkEk � kijh ð2Þ

Di ¼ � oF
oEi

¼ eijkejk þ bijEj þ dih ð3Þ

S ¼ � oF
oh

¼ kijeij þ diEi þ aTh ð4Þ
where rij and Di are the components of the stress tensor and electric displacement vector. S denotes en-

tropy. h ¼ T � T0 is the temperature rise from the initial reference temperature T0. Ei is the components of

the electric field vector. bij is the dielectric permittivity and kij and di refer to the thermal–mechanical and

the thermal–piezo-electric coupling constants.

In the case of considering partial coupling, the constitutive equation given in Eq. (2) is only used for the

analysis. Based on linear piezo-electricity, Ei can be expressed from a scalar potential function / as follows:
Ei ¼ �/;i ði ¼ 1; 2; 3Þ ð5Þ
Infinitesimal displacement and strain relationship is used and it is given as,
eij ¼ 1
2
ðui;j þ uj;iÞ ð6Þ
The configuration of the smart laminated composite plate is shown in Fig. 1.

The governing equations are now derived using the variational principle, assuming no body force, as

follows:
dpu ¼ dUd þ dUs þ dF1 ¼ �
Z t0

0

Z
V
ðq€ui dui þ c _ui dui þ rij deijÞdV dt þ

Z t0

0

Z
S
ti dui dS dt ¼ 0 ð7Þ

dp/ ¼ dE þ dF2 ¼ �
Z t0

0

Z
V
Di d/;i dV dt þ

Z t0

0

Z
S
qE d/dS dt ¼ 0 ð8Þ
Fig. 1. Configuration of the smart structure laminated composite plates.
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dph ¼ dHk þ dHc þ dF3 ¼ �
Z t0

0

Z
V
ðjijh;i dh;j þ _ST0 dhÞdV dt þ

Z t0

0

Z
S
qT dhdS dt ¼ 0 ð9Þ
where pu, p/, and ph are energy functionals for the elastic, electrical, and thermal field, respectively. ui is the

displacement vector and _ui and €ui are the first and second time derivatives of the displacement vectors. The

quantity V is the laminate volume, and the quantity t0 is the time span for the dynamic deformation. q and c
are the density constant and the damping constant of material. The quantities ti and qE, qT are the applied

surface traction, the applied charge density, the applied heat flux respectively. jij denotes the thermal

conductivity. In Eq. (9), S is the entropy and _S is the derivative of S with respect to time.
For efficient modeling without losing accuracy in the present study, a fully coupled higher-order zig-zag

theory is proposed. A zig-zag higher order in-plane displacement field is obtained by superimposing zig-zag

linear field to the globally cubic varying field. In order to include the transverse normal effect which is

significant in thermo-mechanical problems, the out-of-plane displacement field may be assumed to in-

dependently in each layer. However, for the simplicity and efficiency in the present study, the out-of-plane

displacement field is assumed as globally parabolic form through the thickness.

The starting displacement field can be written as follows:
uaðxb; z; tÞ ¼ uo
aðxb; tÞ þ waðxb; tÞzþ naðxb; tÞz2 þ uaðxb; tÞz3 þ

XN�1

k¼1

Sk
aðxb; tÞðz� zkÞHðz� zkÞ

u3ðxa; z; tÞ ¼ wðxa; tÞ þ r1ðxa; tÞzþ r2ðxa; tÞz2
ð10Þ
where Hðz� zkÞ is a Heaviside unit step function. uo
a and w represent the in-plane displacement and the out-

of-plane displacement from the reference plane. wa are the rotation of the normal about xa axes.
A schematic configuration of the general lamination layup and in-plane displacement field is shown in

Fig. 2. By applying top and bottom surface transverse shear free conditions, the following two set of

equations are obtained.
Fig. 2. General lamination layup and in-plane displacement field configurations.
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ca3jz¼0 ¼ wa þ w;a ¼ 0

ca3jz¼h ¼ wa þ w;a þ 2nahþ 3uah
2 þ

XN�1

k¼1

Sk
a þ w;a þ r1;ahþ r2;ah2 ¼ 0

ð11Þ
which, reduces to the following equations.
wa ¼ �w;a

na ¼ � 1

2h
3uah

2

(
þ
XN�1

k¼1

Sk
a þ r1;ahþ r2;ah2

)
ð12Þ
Transverse shear strains can be expressed as,
ca3 ¼ � 3uah

(
þ
XN�1

k¼1

Sk
a

h
þ r1;a þ r2;ah

)
zþ 3uaz

2 þ
XN�1

k¼1

Sk
aHðz� zkÞ þ r1;azþ r2;az2 ð13Þ
Applying transverse shear stress continuity conditions at the interfaces between layers, the change of

slope Sk
a can be determined in terms of the primary variables of the reference plane.
Sk
a ¼ ak

acuc þ bk
acr2;c ð14Þ
where Sk
a is the change of slope at each interfaces. The detailed expression for the coefficients ak

ac, b
k
ac and the

derivation of Eq. (14) are given in the Appendix A. To avoid more complexity of the displacement field, the

transverse normal stress continuity conditions through the thickness are not imposed in the present modeling.

Substituting of Eqs. (12) and (13) into Eq. (10), the final displacement field reduces to the following form.
uaðxb; z; tÞ ¼ uo
aðxb; tÞ � w;aðxb; tÞz�

1

2h
3uah

2

(
þ
XN�1

k¼1

ðak
acuc þ bk

acr2;cÞ þ r1;aðxb; tÞhþ r2;aðxb; tÞh2
)
z2

þ uaðxb; tÞz3 þ
XN�1

k¼1

ðak
acuc þ bk

acr2;cÞðz� zkÞHðz� zkÞ

u3ðxa; z; tÞ ¼ wðxa; tÞ þ r1ðxa; tÞzþ r2ðxa; tÞz2

ð15Þ

The variables in the final displacement field are defined only at the reference plane. The primary variables

are u0a, w, ua, r1, r2. Thus the number of the primary variables does not depend upon the number of layers.

Similar to the displacement field construction, the temperature field through the thickness of the plate is

obtained by superimposing linear zig-zag field onto the global cubic smooth field. The methodology for

imposing transverse shear continuity conditions in Cho and Parmerter (1993) was employed and also

transverse heat flux continuity are applied in the similar line of thought. The starting temperature field can
be written as follows:
hðxb; z; tÞ ¼ h0ðxb; tÞ þ h1ðxb; tÞzþ h2ðxb; tÞz2 þ h3ðxb; tÞz3 þ
XN�1

k¼1

hskðxb; tÞðz� zkÞHðz� zkÞ ð16Þ
A schematic of temperature profile is shown in Fig. 3. In general, the plate may be subjected to tem-

perature and heat flux loads at both top and bottom surfaces. Thus the four different sets of thermal
boundary conditions on both surfaces are expressed as
Set I
�j1

33h;Z ¼ qt at z ¼ 0

�jN
33h;Z ¼ qb at z ¼ h

�
ð17aÞ



Fig. 3. Temperature field configurations through the thickness.
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Set II
�j1

33h;Z ¼ qt at z ¼ 0

h ¼ T b at z ¼ h

�
ð17bÞ
Set III
h ¼ T t at z ¼ 0

h ¼ T b at z ¼ h

�
ð17cÞ
Set IV
h ¼ T t; at z ¼ 0

�jN
33h;z ¼ qb at z ¼ h

�
ð17dÞ
where qt and qb indicate the heat flux applied on top and bottom surfaces, respectively. ji
33 denotes the

thermal conductivity in the thickness direction in the ith layer. T t and T b are the prescribed temperature
values at the top and bottom surfaces. Layer-dependent temperature variable hsk is determined by the heat

flux continuity condition at each interface between layers.
hsk ¼ Ckh3 þ Bkh2 þ dk ð18Þ
where Ck and Bk and dk are functions of heat conduction material properties and thickness of the layers.
The detailed expression of Eq. (18) is given in Appendix B. Coefficients f1, f2, f3, f4 in Appendix B are

tracing constants. The tracing constants f1, f2, f3, f4 are matched to the sets of bounding surface boundary

condition as shown in Table 1. For example, Boundary condition set I in Eq. (17a) is given as f1 ¼ 1 and

f2 ¼ f3 ¼ f4 ¼ 0. Final temperature field is expressed in terms of three primary variables h0 and h2 and h3 in

the reference plane and the prescribed heat fluxes and/or prescribed temperatures at top and bottom sur-

faces.

Substituting thermal boundary condition at the top and bottom surfaces of Eq. (17) into Eq. (16), final

four expressions for the temperature field consistent with four different set of boundary conditions given in
Eq. (17) can be written as follows:



Table 1

Sets of temperature boundary conditions

Set I Set II Set III Set IV

f1 1 0 0 0

f2 0 1 0 0

f3 0 0 1 0

f4 0 0 0 1
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h ¼ h0 �
qt
j1
33

z� 1

2h
qb
jN
33

(
� qt

j1
33

þ 3h3h2 þ
XN�1

k¼1

hsk

)
z2 þ h3z3 þ

XN�1

k¼1

hskðz� zkÞHðz� zkÞ ð19aÞ

h ¼ T b þ
qt
j1
33

h� h2h2 � h3h3 �
XN�1

k¼1

hskðh� zkÞ � qt
j1
33

zþ h2z2 þ h3z3 þ
XN�1

k¼1

hskðz� zkÞHðz� zkÞ ð19bÞ

h ¼ T t þ
T b

h

(
� T t

h
� h2h� h3h2 �

XN�1

k¼1

hskðh� zkÞ=h
)
zþ h2z2 þ h3z3 þ

XN�1

k¼1

hskðz� zkÞHðz� zkÞ ð19cÞ

h ¼ T t þ
(

� qb
jN
33

� 2h2h� 3h3h2 �
XN�1

k¼1

hsk

)
zþ h2z2 þ h3z3 þ

XN�1

k¼1

hskðz� zkÞHðz� zkÞ ð19dÞ
The unified temperature field using the tracing constants f1, f2, f3 and f4 are given as the following single

equation (20).
h ¼ f1h0 þ f2 T b

(
þ qt

j1
33

h� h2h2 � h3h3 �
XN�1

k¼1

hskðh� zkÞ
)

þ ðf3 þ f4ÞT t þ ðf1 þ f2Þ
�
� qt

j1
33

z
�

þ f3
T b

h

(
� T t

h
� h2h� h3h2 �

XN�1

k¼1

hskðh� zkÞ=h
)
zþ f4

(
� qb

jN
33

� 2h2h� 3h3h2 �
XN�1

k¼1

hsk

)
z

þ f1

"
� 1

2h
qb
jN
33

(
� qt

j1
33

þ 3h3h2 þ
XN�1

k¼1

hsk

)
z2
#
þ f2ð þ f3 þ f4Þ h2z2

	 

þ h3z3

þ
XN�1

k¼1

hskðz
(

� zkÞHðz� zkÞ
)

ð20Þ
It must be noted that the higher order temperature field defines a non-uniform zig-zag temperature

distribution through the thickness of plates. The functions h0ðx; yÞ and h1ðx; yÞ define the in-plane tem-

perature variations. It is important to note that although a linear temperature field can address the in-plane
temperature distribution, it cannot satisfy the surface thermal boundary conditions nor the heat flux

continuity conditions at the interfaces between layers. Therefore, temperature variations through the

thickness, which produce the most important bending deformation, cannot be modeled accurately by the

linear temperature field nor smooth cubic field. The present temperature field given in Eq. (19) can describe

accurate and simple distribution through the thickness and the pattern is consistent with the cubic zig-zag

in-plane displacement field given in Eq. (15). It should be emphasized that if the adjacent layers have severe

changes of thermal material properties like sandwich plates or hybrid composite plates, the temperature

field given in each equation (19) can predict accurate but significantly different results from those of
smeared temperature fields.
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The expressions for the electric potential function can be written as follows
/ðxb; z; tÞ ¼
XN
k¼1

/ðkÞ
0 ðxb; tÞ

n
þ /ðkÞ

1 ðxb; tÞðz� zk�1Þ
o
fHðz� zk�1Þ � Hðz� zkÞg ð21Þ
The description of the electric potential /ðxb; z; tÞ is expressed as layer-dependent form using linear zig-zag

field through the thickness. Two degrees of freedom are required to express electric potential / in each

piezo-electric layer. Since the piezo-electric field exists only in the piezo-electric layers, the formulation of

the electric potential is not applicable continuously through the thickness. Even though the layer-dependent

potential field is assumed through the thickness, the number of piezo-layers is relatively small compared to

the total number of layers. Thus this layer-dependent electric potential field does not increase the number of

degrees of freedom significantly. Variational functional based on Eqs. (15) and (19)–(21) can be constructed
for general materials with fully coupled constitutive relations given in Eqs. (2)–(4). The equilibrium

equations and boundary conditions can be derived from the Hamilton principle. The fully coupled gov-

erning equations for the proposed deformation, temperature, and electric field are given here.

Equilibrium equations are derived as,
du0a : Nab;ba � I0€ua � c _ua ¼ 0 ð22aÞ

dw : Mab;ba � q€u3 � c€u3 þ P ¼ 0 ð22bÞ

dua : Rab;b � Va ¼ 0 ð22cÞ

dr1 : N3 �
1

2
Rð2Þ

ab;ba ¼
P
2

ð22dÞ

dr2 : 2M3 þ Jab;ba þ Ia;a ¼ � P
2
h2 ð22eÞ

d/ðkÞ
0 :

XN
k¼1

F 0ðkÞ
a;a ¼ �q0ðkÞe ð22fÞ

d/ðkÞ
1 :

XN
k¼1

F 1ðkÞ
a;a � F 0ðkÞ

3 ¼ �q1ðkÞe ð22gÞ

dh0 : NH
ab;b þ V H

b;b � _T H ¼ �ðqt þ qbÞ ð22hÞ

dh3 : ðV Hð1Þ
a þMHð1Þ

3 Þ
(

� 1

h
3h2

 
þ
XN�1

k¼1

Ck

!)
þ RHð2Þ

ab;b

�
þ V Hð2Þ

b;b

� 1

2h
3h2
 (

þ
XN�1

k¼1

Ck

!)

þ 3 V Hð2Þ
a

�
þMHð2Þ

3

�
þ _THð2Þ

(
� 1

2h
3h2
 

þ
XN�1

k¼1

Ck

!)
� RHð3Þ

ab;b

�
þ V Hð3Þ

b;b

�
þ _THð3Þ

�
XN�1

k¼1

Ck M
Hk
ab;b

�
þ Q

Hk
b;b

�
þ
XN�1

k¼1

Ck Q
	Hk
a

�
þ SH

3

�
þ
XN�1

k¼1

Ck _EHk

¼ qb

(
� 1

2h
3h2

 
þ
XN�1

Ck

!
h2 þ h3 þ

XN�1

Ckðh� zkÞ
)

ð22iÞ

k¼1 k¼1
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Boundary conditions are given as,
Nabmb ¼ 0 or u0a prescribed ð23aÞ
Mab;bma ¼ 0 or w prescribed ð23bÞ
Mabmb ¼ 0 or w;a prescribed ð23cÞ
Rabmb ¼ 0 or ua prescribed ð23dÞ
1
2
Rð2Þ

ab;bma ¼ 0 or r1 prescribed ð23eÞ
1
2
Rð2Þ

ab mb ¼ 0 or r1;a prescribed ð23fÞ
ðIa þ Jab;bÞma ¼ 0 or r2 prescribed ð23gÞ
Jabmb ¼ 0 or r2;a prescribed ð23hÞ
F 0ðkÞ
a ma ¼ 0 or /ðkÞ

0 prescribed ð23iÞ
F 1ðkÞ
a ma ¼ 0 or /ðkÞ

1 prescribed ð23jÞ
ðNH
ab þ V H

b Þmb or h0 prescribed ð23kÞ
RHð2Þ
ab

�
þ V Hð2Þ

b

�(
� 1

2h
3h2
 

þ
XN�1

k¼1

Ck

!)
mb þ RHð3Þ

ab

�
þ V Hð3Þ

b

�
mb

þ
XN�1

k¼1

M
Hk
ab

�
þ Q

Hk
b

�
mb or h3 prescribed ð23lÞ
The generalized stress resultants are shown in Eqs. (22) and (23) are given in Appendix C.
The field variables are assumed to have double trigonometric series for simply supported boundary

condition as follows.
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~u ¼

u01 ¼
P
m;n

U cos mp
a x sin np

b y

u02 ¼
P
m;n

V sin mp
a x cos np

b y

w ¼
P
m;n

W sin mp
a x sin np

b y

u1 ¼
P
m;n

X1 cos
mp
a x sin np

b y

u2 ¼
P
m;n

X2 sin
mp
a x cos np

b y

r1 ¼
P
m;n

R1 sin
mp
a x sin np

b y

r2 ¼
P
m;n

R2 sin
mp
a x sin np

b y

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

; ~h ¼
h0 ¼

P
m;n

H0 sin
mp
a x sin np

b y

h3 ¼
P
m;n

H3 sin
mp
a x sin np

b y

8><
>:

9>=
>;;

~/ ¼
/0 ¼

P
m;n

U0 sin
mp
a x sin np

b y

/1 ¼
P
m;n

U1 sin
mp
a x sin np

b y

8><
>:

9>=
>; ð24Þ
~F ¼

t3 ¼
P
m;n

T3 sin mp
a x sin np

b y

qe ¼
P
m;n

Qe sin
mp
a x sin np

b y

qt ¼
P
m;n

Qt sin
mp
a x sin np

b y

qb ¼
P
m;n

Qb sin
mp
a x sin np

b y

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð25Þ
where t3 expresses traction in z direction. In order to obtain the solution of equilibrium equation, the above

field variables equations (24) and (25) are substituted into Eqs. (7)–(9). Final governing equation for steady

state can be written as follows:
Kuu Ku/ Kuh

K/u K// K/h

Khu Kh/ Khh

2
4

3
5 ~u

~/
~h

8<
:

9=
; ¼ ~F

n o
ð26Þ
where ~u, ~/, and ~h are the displacement variable vector, the electric potential variable vector, and the

temperature variable vector. The detailed expressions of the coefficient K are omitted for the limited space.

The field variables are obtained by solving Eq. (26).
3. Numerical examples

Constitutive relations given in Eqs. (2)–(4) account for full coupling between mechanical, thermal and

electric fields. Eqs. (5) and (6) are used to replace the strains and the electric fields in Eqs. (2) and (3) by their

expressions in terms of the displacements and electric potentials. Eq. (4) may not be used for steady-state

problems.

The decoupled theory is obtained by neglecting governing equations given in Eqs. (8) and (9) and

neglecting the temperature and electric terms given in Eq. (7). The temperature change and the electric field

are treated as external loads in the decoupled theory. The response of the decoupled theory has been studied
in our previous work (Cho and Oh, 2002). The previous study (Cho and Oh, 2002) demonstrated that the



Fig. 4. Plate under mechanical and electric loading.

Table 2

Material properties of the graphite–epoxy and PVDF layer

PVDF layer Graphite–epoxy layer

E1 ¼ E2 ¼ E3 ¼ 2
 109 (Pa) E1 ¼ 172:37
 109 (Pa)

m ¼ 0:29 E2 ¼ E3 ¼ 6:895
 109(Pa)

e31 ¼ e32 ¼ 0:0046 (C/m2) G12 ¼ G13 ¼ 3:4475
 109 (Pa)

e33 ¼ e24 ¼ e15 ¼ 0 G23 ¼ 1:379
 109 (Pa)

b11 ¼ b22 ¼ b33 ¼ 0:1062
 10�9 (F/m) m ¼ 0:25

b11 ¼ b22 ¼ b33 ¼ 8:85
 10�12 (F/m)

Table 3

Displacement and stresses for mechanical–electric coupling load comparison between the present and the exact solution (mechanical–

electric coupling problem)

S w (+h=2) rx (0) ry

(+2h=3)
rxy (0) rxz

(+h=2)
ryz

(+h=2)
rzz

(+h=2)

V¼ 0 V
4 Exact (Ray, 1993) 1.99 )0.754 0.532 0.049 0.256 0.217 0.492

PT 1.94 )0.837 0.583 0.049 0.238 0.229 0.498

10 Exact (Ray, 1993) 0.774 )0.589 0.284 0.0288 0.357 0.123 0.499

PT 0.751 )0.592 0.291 0.0288 0.356 0.124 0.499

100 Exact (Sheikh,

2001)

0.433 )0.545 0.181 0.021 0.394 0.083 0.5

PT 0.434 )0.548 0.181 0.021 0.394 0.083 0.5

V¼ 100 V
4 Exact (Ray, 1993) )31.56 11.78 )21.24 )0.728 )3.625 )0.910 )6.68

PT )30.6 13.03 )25.10 )1.153 )3.606 )2.163 )8.363
10 Exact (Ray, 1993) )2.35 1.48 )2.34 )0.058 )0.683 0.336 )0.878

PT )2.22 1.49 )2.43 )0.072 )0.686 0.305 )0.932
100 Exact (Sheikh,

2001)

0.411 )0.514 0.158 0.021 0.382 0.086 0.486

PT 0.412 )0.518 0.158 0.021 0.382 0.086 0.485

The non-dimensional parameters: ðwÞ ¼ wð100ET Þ=ðq0hS4Þ, ðu; mÞ ¼ ðu; mÞð100ET =q0hS3Þ, ðrx;ry ;rxyÞ ¼ ðrx; ry ;rxyÞ=q0S2.

ðrxz; ryzÞ ¼ ðrxz;ryzÞ=q0S; ðrzzÞ ¼ �ðrzzÞ=q0S and S ¼ a=h.
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Fig. 5. (a) In-plane stresses (V ¼ 0 V), (b) transverse shear stresses (V ¼ 0 V), (c) in-plane stresses (V ¼ 100 V), (d) transverse shear

stresses (V ¼ 100 V) and (e) transverse normal stresses.
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transverse normal deformation effect can not be neglected under thermal and electric loads. In the present

numerical examples, three types of coupled problems are considered. They are mechanical–electric cou-

pled problem, mechanical–electric coupled problem under thermal loads, and fully coupled thermo-

electric–mechanical problem. In the numerical example, the coordinates x and y indicates x1 and x2,
respectively.
3.1. Mechanical–electric coupled/uncoupled problems

Simply supported square plate with [piezo(sensor)/0/90/0/piezo(actuator)] layup is considered. The

mechanical loading is doubly sinusoidal and it is applied at the top bounding surface. The schematic of

the geometry and loading conditions is shown in Fig. 4. The material properties for this case are given in

Table 2. Mechanical load is 1 lb/in.2 and it is applied at the top surface of the plate. The voltage V ¼ 0 and

100 V are applied at the piezo-actuator located at the bottom of the laminate. Out-of-plane displacements

and all the stress components through the thickness for various thickness ratios are given in Table 3. The

3-D elasticity solutions for mechanical–electric coupling problems can be found in Ray et al. (1993) and

Sheikh et al. (2001). And it is also given in Table 3 for the comparison. The detailed through-the-thickness
stress distributions for thick laminates (S ¼ 4) are depicted in Fig. 5. Same non-dimensionalization has been

carried out for Table 3 and Fig. 5.

In the thick plate (S ¼ 4), out-of-plane displacement has parabolic pattern through the thickness and the

prediction of the present higher order zig-zag model correlates very well with the exact elasticity solutions.

In moderate thick case (S ¼ 10), the deflection is almost uniform through the thickness. Once more, the

deflection of the present theory agrees well to the elasticity solution as shown in Table 3.

The in-plane stress distributions through the thickness are shown in Fig. 5(a) and (c). When the voltage

V ¼ 100 V is applied, the maximum in-plane stresses change their sign.
Transverse stresses are depicted in Fig. 5(b), (d), and (e). Transverse shear and normal stresses are

obtained by integrating 3-D local stress equilibrium equations through the thickness of laminates. In the

case that the voltage is applied in the actuator layer, the transverse shear stresses of the piezo-sensor layer

near the top surface, varies severely to satisfy bounding surface free traction conditions. Applied voltage in

the actuator layer in the considered layup configuration amplifies the magnitude of the transverse shear and

normal stresses significantly.
Fig. 6. Plate under electric loading and uniform thermal loading.



Fig. 7. (a) Out-of-plane displacement, (b) in-plane stress ðrxx=ExxÞ104, (c) in-plane shear stress ðrxy=ExxÞ104, (d) transverse shear stress
ðrzx=GxyÞ105 and (e) transverse normal stresses rzz.
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3.2. Mechanical–electric coupling under thermal loads

Two cases are considered in mechanical–electric coupling problem under thermal loads. The first case is

for the laminate with piezo-actuator attached on the bottom surface. Fig. 6 shows a schematic of square
plate with unsymmetric [90/0/90/0/0/90/0/90/piezo(actuator)] layup. Top and bottom bounding faces are

under the uniform temperature rise up to 50 �C. Sinusoidal temperature distributions are considered along

the in-plane dimension and they are given in Fig. 6. Boundary conditions are all simple-supported. Fig. 7

shows the deflections and stress distributions under various voltage applied. The out-of-plane displacement

is shown in Fig. 7(a). The out-of-plane displacement is almost constant through the thickness of the plate.

In the zero voltage applied, the plate is deflected in the upward direction. When small voltage (V ¼ 100 V)

is applied, the deflection becomes smaller compared to that of the case no voltage is applied. When high

voltages (V ¼ 200 and 300 V) are applied, the direction of the deflection is changed from upward to
downward direction. This observation indicates that the deflection shape can be effectively controlled by the

applied high voltage in piezo-actuator layers.

The variation of in-plane normal and shear stresses through the thickness are shown in Fig. 7(b) and (c).

As shown in Fig. 7(b), the maximum bending normal stress (rxx) changes its sign from tension to com-

pression which is consistent with the change of the direction of deflection. The maximum in-plane shear

stresses are also significantly changed as the applied electric voltage is getting higher. Transverse shear

stress (rzx) is plotted in Fig. 7(d). As the applied voltage gets higher, the transverse shear stresses change

direction. Interlaminar normal stresses change also direction as the applied voltage is getting higher.
The second case is for the laminate with the attached top face piezo-sensor and the attached bottom face

piezo-actuator. At the bottom surface, uniform temperature )50 �C is imposed and at the top surface,

uniform temperature rise 50 �C is imposed. The layup configuration is [piezo(sensor)/0/90/0/0/90/0/

piezo(actuator)] and schematic of the plate is shown in Fig. 8. Since electric voltage V ¼ 100 V is applied

only at the bottom surface actuator, the normal stress rxx has the maximum value near the bottom layer.

However, the maximum in-plane shear stress appears near the bottom surface even though the magnitude

of the shear stress is only 10% of the maximum bending stress as shown in Fig. 9(a) and (b). The transverse

shear stress shows zig-zag pattern through the thickness as shown in Fig. 9(c). The transverse normal stress
also oscillates significantly through the thickness as shown in Fig. 9(d). Fig. 10 shows the difference between

the predictions by the present higher order zig-zag theory and HOT (smeared higher order theory). HOT

cannot provide accurate results for thick composite plates. The results of uncoupled zig-zag theory show

more accurate stress prediction than HOT does. However, the prediction of the uncoupled cubic zig-zag
Fig. 8. Plate under electric loading and thermal gradient loading.



Fig. 9. (a) In-plane stress ðrxx=ExxÞ104, (b) in-plane shear stress ðrxy=ExxÞ104, (c) transverse shear stress ðrzx=GxyÞ105 and (d) transverse

normal stresses rzz.
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theory shows discrepancy from that of coupled one because the mechanical energy is transformed into

electric and thermal energy in the coupled theory but such energy transformation cannot occur in the

uncoupled theory.
3.3. Fully coupled thermo-electric–mechanical problem

For the analysis of fully coupled problems, a problem with the prescribed bounding surface heat flux (set

I) of Eq. (17a) is considered. The schematic of the problem is shown in Fig. 11. Heat flux qt ¼ 1000 W/m2 is

applied on the top surface of the plate and bottom surface is adiabatic, i.e. qb ¼ 0 W/m2. The layup

configuration is given as [90/0/90/0/0/90/0/90/piezo(actuator)]. The material properties for this case are

given in Table 4. This properties were employed from Haozhong et al. (2000).



Fig. 10. (a) In-plane stress ðrxx=ExxÞ104, (b) in-plane stress (V ¼ 100 V), (c) transverse shear stress ðrzx=GxyÞ105, (d) transverse shear

stress (V ¼ 100 V), (e) transverse normal stresses rzz and (f) transverse normal stresses (V ¼ 100 V).
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Fig. 11. Plate under electric loading and heat flux loading.

Table 4

Material properties of the graphite–epoxy and PZT layers

PZT layer Graphite–epoxy layer

E1 ¼ E2 ¼ E3 ¼ 63
 109 (Pa) E1 ¼ 144:23
 109 (Pa)

G12 ¼ G13 ¼ G23 ¼ 24:6
 109 (Pa) E2 ¼ E3 ¼ 9:65
 109 (Pa)

m ¼ 0:28 G12 ¼ G13 ¼ 4:14
 109 (Pa)

a11 ¼ a22 ¼ a33 ¼ 0:9
 10�6 (/�C) G23 ¼ 3:45
 109 (Pa)

d31 ¼ d32 ¼ 150
 10�12 (m/V) m ¼ 0:3

d33 ¼ �336:8
 10�12 (m/V) a11 ¼ 1:1
 10�6 (/�C)
d24 ¼ 0 a22 ¼ a33 ¼ 25:2
 10�6 (/�C)
d15 ¼ 0 j11 ¼ 4:48 (W/m �C)
b11 ¼ b22 ¼ 15:3
 10�9 (F/m) j22 ¼ j33 ¼ 3:21 (W/m �C)
b33 ¼ 15:0
 10�9 (F/m)

d3 ¼ 20
 10�6 (C/m2 �C)
j11 ¼ j22 ¼ j33 ¼ 2:1 (W/m �C)
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The temperature profile through the thickness is obtained by solving coupled heat equation, equilib-

rium equation and electro-static equation. It shows a smooth distribution through the thickness except

the piezo-actuator layer, where the high temperature gradient is observed. If we consider the case with

severe thermal property changes through the thickness such as the sandwich or hybrid composite plate,

the zig-zag assumed temperature field in the present theory may strongly demonstrate its efficiency and

accuracy.

The in-plane normal stresses and transverse shear stress distribution are shown in Fig. 12(b) and (c).
Once more, complicated zig-zag patterns are shown in the transverse shear stresses through the thickness.

The transverse normal stress distribution is depicted in Fig. 12(d). It shows smooth parabolic shape through

the thickness. Fig. 12(e) depicts the out-of-plane displacements through the thickness for fully coupled case

and decoupled case. Once more, the parabolic shape of out-of-plane displacements is observed in both

cases. Thus the assumption of the present theory on the out-of-plane displacement is appropriate. The

results indicate that the coupling effects play an important role in smart composite applications under

thermal loads. The deflection predicted by the decoupled theory is always larger, compared to the coupled

theory by the amount of 10–20%.



Fig. 12. (a) Temperature field, (b) in-plane stress ðrxx=ExxÞ104, (c) transverse shear stress ðrzx=GxyÞ105, (d) transverse normal stresses rzz

and (e) out-of-plane displacement w.
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Fig. 13. Deflection top reference surface of coupled and uncoupled theories.
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Fig. 13 shows the non-dimensional transverse deflection. vs. the variation of the thickness ratio. The

non-dimensional deflections of both the fully coupled theory and decoupled theory decrease as the

thickness becomes smaller. The decoupled model overestimates the deflections about 20% compared to
those of the coupled one. Thus for the purpose of the reliable analysis and design, full coupling effects

between thermo-mechanical–electric behavior need to be considered.
4. Conclusion

A higher order zig-zag theory is developed to enhance the prediction of fully coupled mechanical,

thermal, and electric responses of smart composite plates. By imposing transverse shear stress free con-

dition of top and bottom surfaces and interface continuity conditions between layers, the layer-dependent

displacement variables can be eliminated. In the similar way, by imposing top and bottom surface heat flux

boundary conditions and interface transverse heat flux continuity conditions between layers, the temper-

ature-related variables in each layer are reduced to the temperature degrees of freedom of reference surface.

Thus the final form of displacement and temperature fields has only reference primary variables. Layer-

dependent degrees of freedom come from the electric potential degrees of freedom only. However, the
formulation still keeps the efficiency since the number of the piezo-electric layers is not so large in the

practical applications.

Through the numerical examples of uncoupled responses, it is observed that the transverse normal

deformation effect is not negligible in the situations that electric and thermal loads are applied. The present

theory demonstrated its performance in predicting deformations and interlaminar stresses because it in-

cludes the effect of transverse normal deformation. Coupled and uncoupled analyses under thermal loads

indicate that uncoupled analysis may overestimate the deflections compared to those of the coupled

analysis. The deviation of the results of uncoupled analysis from those of coupled case is up to 20%. Thus
full coupling should be considered in the analysis in case of thermal environments.
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The present fully coupled theory should be implemented in the finite element framework for the practical

thick smart composite plate problem with general geometry, layup, boundary, and loading conditions.
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Appendix A. Transverse shear stress continuity conditions

The transverse shear continuity conditions for z > 0 at z ¼ zm, m ¼ 1; 2; . . . ;N � 1 (zm ¼ upper surface of

mth layer) are
r3ajz¼z�m
¼ r3ajz¼zþm
These transverse shear continuity conditions at the interfaces can be expressed by the following matrix

equation.
a1;1 a1;2 a1;3 � � � � � � � � � a1;2ðN�2Þ a1;2ðN�1Þ

a2;1 a2;2 a2;3 � � � � � � � � � a2;2ðN�2Þ a2;2ðN�1Þ

a3;1 a3;2 a3;3 � � � � � � � � � a3;2ðN�2Þ a3;2ðN�1Þ

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

a2m�1;1 a2m�1;2 a2m�1;3 � � � � � � � � � a2m�1;2ðN�2Þ a2m�1;2ðN�1Þ

a2m;1 a2m;2 a2m;3 � � � � � � � � � a2m;2ðN�2Þ a2m;2ðN�1Þ

� � � � � � � � � � � � � � � � � � � � � � � �
a2ðN�2Þ;1 a2ðN�2Þ;2 a2ðN�2Þ;3 � � � � � � � � � a2ðN�2Þ;2ðN�2Þ a2ðN�2Þ;2ðN�1Þ

2
666666666666664

3
777777777777775

S1
1

S2
1

..

.

SN�1
1

S1
2

S2
2

..

.

SN�1
2

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼

DQ1
55ð3hz1 � 3z21Þ

DQ1
45ð3hz1 � 3z21Þ

..

.

DQm�1
55 ð3hzm�1 � 3z2m�1Þ

DQm�1
45 ð3hzm�1 � 3z2m�1Þ

..

.

DQN�1
55 ð3hzN�1 � 3z2N�1Þ

DQN�1
45 ð3hzN�1 � 3z2N�1Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðu1Þ þ

DQ1
45ð3hz1 � 3z21Þ

DQ1
44ð3hz1 � 3z21Þ

..

.

DQm�1
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>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðu2Þ

þ

DQ1
55ðhz1 � z21Þ
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45ðhz1 � z21Þ

..

.

DQm�1
55 ðhzm�1 � z2m�1Þ
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..

.

DQN�1
55 ðhzN�1 � z2N�1Þ

DQN�1
45 ðhzN�1 � z2N�1Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðr2;1Þ þ

DQ1
45ðhz1 � z21Þ

DQ1
44ðhz1 � z21Þ

..

.

DQm�1
45 ðhzm�1 � z2m�1Þ

DQm�1
44 ðhzm�1 � z2m�1Þ

..

.

DQN�1
45 ðhzN�1 � z2N�1Þ

DQN�1
44 ðhzN�1 � z2N�1Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðr2;2Þ
where DQm
ij ¼ Qmþ1

ij � Qm
ij .
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(2m� 1)th layer row:
a2m�1;1 ¼ a2m�1;2 ¼ a2m�1;3 ¼ � � � ¼ a2m�1;m�1 ¼
�
� zm�1

h
þ 1
�
DQm�1

55 ; a2m�1;m ¼ � zm�1

h
DQm�1

55 þ DQm
55
a2m�1;mþ1 ¼ a2m�1;mþ2 ¼ � � � ¼ a2m�1;N�1 ¼ � zm�1

h
DQm�1

55
a2m�1;N ¼ a2m�1;Nþ1 ¼ a2m�1;Nþ2 ¼ � � � ¼ a2m�1;Nþm�2 ¼
�
� zm�1

h
þ 1
�
DQm�1

45
a2m�1;Nþm�1 ¼ � zm�1

h
DQm�1

45 þ DQm
45
a2m�1;Nþm ¼ a2m�1;Nþmþ1 ¼ � � � ¼ a2m�1;2ðN�1Þ ¼ � zm�1

h
DQm�1

45
(2m)th row:
a2m;1 ¼ a2m;2 ¼ a2m;3 ¼ � � � ¼ a2m;m�1 ¼
�
� zm�1

h
þ 1
�
DQm�1

45 ; a2m;m ¼ � zm�1

h
DQm�1

45 þ DQm
45
a2m;mþ1 ¼ a2m;mþ2 ¼ � � � ¼ a2m;N�1 ¼ � zm�1

h
DQm�1

45
a2m;N ¼ a2m;Nþ1 ¼ a2m;Nþ2 ¼ � � � ¼ a2m;Nþm�2 ¼
�
� zm�1

h
þ 1
�
DQm�1

44
a2m;Nþm�1 ¼ � zm�1

h
DQm�1

44 þ DQm
44; a2m;Nþm ¼ a2m;Nþmþ1 ¼ � � � ¼ a2m;2ðN�1Þ ¼ � zm�1

h
DQm�1

44
These equations are of the form
½A
fSg ¼ ½B1
ðu1Þ þ ½B2
ðu2Þ þ ½C1
ðr2;1Þ þ ½C2
ðr2;2Þ
where ½A
 : 2ðN � 1Þ 
 2ðN � 1Þ½B1
, ½B1
 : 2ðN � 1Þ 
 1½C1
, ½C1
 : 2ðN � 1Þ 
 1, ½S
 : 2ðN � 1Þ 
 1, fSg ¼
½A
�1½B1
ðu1Þ þ ½A
�1½B2
ðu2Þ þ ½A
�1½C1
ðr2;1Þ þ ½A
�1½C2
ðr2;2Þ.

Therefore
Sk
a ¼ ak

acuc þ bk
acr2;c
where, ak
11 ¼ kth row of ½A
�1½B1
, ak

12 ¼ kth row of ½A
�1½B2
, ak
21 ¼ ðN � 1þ kÞth row of ½A
�1½B1
,

ak
22 ¼ ðN � 1þ kÞth row of ½A
�1½B2
, bk

11 ¼ kth row of ½A
�1½C1
, bk
12 ¼ kth row of ½A
�1½C2


bk
21 ¼ ðN � 1þ kÞth row of ½A
�1½C1
, bk

22 ¼ ðN � 1þ kÞth row of ½A
�1½C2
.
Appendix B. Heat flux continuity conditions

The heat flux continuity conditions for z > 0 at z ¼ zm, m ¼ 1; 2; . . . ;N � 1 (zm ¼ upper surface of mth
layer) are
qz¼z�m ¼ qz¼zþm
These heat flux continuity conditions at the interfaces can be expressed by the following matrix equation.
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r1;1 r1;2 r1;3 � � � � � � � � � r1;N�2 r1;N�1

r2;1 r2;2 r2;3 � � � � � � � � � r2;N�2 r2;N�1

r3;1 r3;2 r3;3 � � � � � � � � � r3;N�2 r3;N�1

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

rm�1;1 rm�1;2 rm�1;3 � � � � � � � � � rm�1;N�2 rm�1;N�1

rm;1 rm;2 rm;3 � � � � � � � � � rm;N�2 rm;N�1

� � � � � � � � � � � � � � � � � � � � � � � �
rN�1;1 rN�1;2 rN�1;3 � � � � � � � � � rN�2;N�2 r2ðN�2Þ;2ðN�1Þ
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33z1
 þ f4½Dj1
332ðh� z1Þ


..

.

f2½Djm�1
33 ðh� 2zm�1Þ
 þ f3½�2Djm�1

33 zm�1
 þ f4½Djm�1
33 2ðh� zm�1Þ


f2½Djm
33ðh� 2zmÞ
 þ f3½�2Djm

33zm
 þ f4½Djm
332ðh� zmÞ


..

.

f2½DjN�1
33 ðh� 2zN�1Þ
 þ f3½�2DjN�1

33 zN�1
 þ f4½DjN�1
33 2ðh� zN�1Þ


8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ðh2Þ

þ

f1 Dj1
33

qt
j1
33

þ 1
h

qb
jN
33

� qt
j1
33

n o
z1

h in o
þ f2 T t

h � T b

h

h i
þ f3 Dj1

33
qt
j1
33

h i
þ f4 Dj1

33
qb
jN
33

h i
..
.

f1 Djm�1
33

qt
j1
33

þ 1
h

qb
jN
33

� qt
j1
33

n o
zm�1

h in o
þ f2 Djm�1

33
T t

h � T b

h

h in o
þ f3 Djm�1

33
qt
j1
33

h i
þ f4 Djm�1

33
qb
jN
33

h i
f1 Djm

33
qt
j1
33

þ 1
h

qb
jN
33

� qt
j1
33

n o
zm

h in o
þ f2 Djm

33
T t

h � T b

h

h in o
þ f3 Djm

33
qt
j1
33

h i
þ f4 Djm

33
qb
jN
33

h i
..
.

f1 DjN�1
33

qt
j1
33

þ 1
h

qb
jN
33

� qt
j1
33

n o
zN�1

h in o
þ f2 DjN�1

33
T t

h � T b

h

h in o
þ f3 DjN�1

33
qt
j1
33

h i
þ f4 DjN�1

33
qb
jN
33

h i

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;
where Djm
33 ¼ jmþ1

33 � jm
33.

(m� 1)th layer row: i ¼ 1; 2; . . . ;m� 2
rm�1;i ¼ f1
�
� zm�1

h

�
Djm�1

33 þ f2 Djm�1
33 ðzi

!
� hÞ 1

h

"
þ f4ð�Djm�1

33 Þ þ Djm�1
33

rm�1;m�1 ¼ f1
�
� zm�1

h
Djm�1

33

�
þ f2 Djm�1

33 ðzm�1

!
� hÞ 1

h

"
þ f4ð�Djm�1

33 Þ þ jm
33
j ¼ m;mþ 1; . . . ;N � 1
rm�1;j ¼ f1
�
� zm�1

h
Djm�1

33

�
þ f2 Djm�1

33 ðzj
!

� hÞ 1
h

"
þ f4ð�Djm�1

33 Þ
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(m)th row: i ¼ 1; 2; . . . ;m� 1
rm;1 ¼ rm;2 ¼ rm;3 ¼ � � � ¼ rm;m�1 ¼ f1
�
� zm

h

�
Djm

33 þ f2 Djm
33ðzi

!
� hÞ 1

h

"
þ f4ð�Djm

33Þ þ Djm
33

rm;m ¼ f1
�
� zm

h
Djm

33

�
þ f2 Djm

33ðzm
!

� hÞ 1
h

"
þ f4ð�Djm

33Þ þ jmþ1
33
j ¼ mþ 1; . . . ;N � 1
rm;mþ1 ¼ rm;mþ2 ¼ � � � ¼ rm;N�1 ¼ f1
�
� zm

h
Djm

33

�
þ f2 Djm

33ðzj
!

� hÞ 1
h

"
þ f4ð�Djm

33Þ
These equations are of the form
½A
fhsg ¼ ½C
ðh3Þ þ ½B
ðh2Þ þ ½D

where ½A
 : ðN � 1Þ 
 ðN � 1Þ, ½B
 : ðN � 1Þ 
 1, ½C
 : ðN � 1Þ 
 1, ½D
 : ðN � 1Þ 
 1, ½hs
 : ðN � 1Þ 
 1
fhsg ¼ ½A
�1½C
ðh3Þ þ ½A
�1½B
ðh2Þ þ ½A
�1½D


Therefore
hsk ¼ Ckh3 þ Bkh2 þ dk
where Ck ¼ kth row of ½A
�1½C
, Bk ¼ kth row of ½A
�1½B
, dk ¼ kth row of ½A
�1½D
.

Appendix C. Definitions of the resultants

C.1. Resultants

Resultants given in the equilibrium equation (21) and boundary condition (22) are defined as follows.
Nab Mab Rð2Þ
ab Rð3Þ

ab

h i
¼
Z h

0

rab 1 z z2 z3
# $

dz; N
i
ab M

i
ab

h i
¼
Z h

0

rab½1ðz� ziÞ
Hðz� ziÞdz

V ð1Þ
a V ð2Þ

a Qi
a

# $
¼
Z h

0

r3a z z2 Hðz� ziÞ
# $

dz; N3 ¼
Z h

0

r33 dz; M3 ¼
Z h

0

r33zdz

Jab ¼ � h
2
Rð2Þ

ab þ
XN�1

k¼1

bk
ca M

k
cb

�
� 1

2h
Rð2Þ

cb

�
; Ia ¼ hV ð1Þ

a � V ð2Þ
a þ

XN�1

k¼1

bk
ca

1

h
V ð1Þ

c

�
� Qk

c

�

Rab ¼ Rð3Þ
ab � 3

2
hRð2Þ

ab þ
XN�1

k¼1

ak
ca

�
� 1

h
Rð2Þ

cb þM
k
cb

�

Va ¼ 3V ð2Þ
a � 3hV ð1Þ

a þ
XN�1

k¼1

ak
ca Qk

c

�
þ 1

h
V ð1Þ

c

�

F 0
a F 1

a

# $
¼
Z h

0

Da 1 z½ 
½Hðz� z0Þ � Hðz� z1Þ
dz; F 0
3 ¼

Z h

0

D3½Hðz� z0Þ � Hðz� z1Þ
dz
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F ðNÞ0
a F ðNÞ1

a

# $
¼
Z h

0

Da 1 z½ 
½Hðz� zN�1Þ
dz; F ðNÞ0
3 ¼

Z h

0

D3½Hðz� zN�1Þ
dz

NH
ab RHð2Þ

ab RHð3Þ
ab

h i
¼
Z h

0

ðjabh;aÞ 1 z2 z3
# $

dz; V H
b V Hð2Þ

b V Hð3Þ
b

h i
¼
Z h

0

ðj3bh;3Þ 1 z2 z3
# $

dz

M
Hk
ab

h i
¼
Z h

0

ðjabh;aÞðz� zkÞ½Hðz� zkÞ
dz; Q
Hk
b

h i
¼
Z h

0

ðj3bh;3Þðz� zkÞ½Hðz� zkÞ
dz

V Hð1Þ
a V Hð2Þ

a Q	Hk
a

# $
¼
Z h

0

ðja3h;aÞ z z2 Hðz� zkÞ
# $

dz

T H T Hð2Þ THð3Þ
# $

¼
Z h

0

ðST0Þ 1 z2 z3
# $

dz

MHð1Þ
3 MHð2Þ

3 SHk
3

h i
¼
Z h

0

ðj33h;3Þ z z2 Hðz� zkÞ
# $

dz; EHk ¼
Z h

0

ðST0Þðz� zkÞHðz� zkÞdz
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