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Abstract

A higher order zig-zag plate theory is developed to refine the prediction of the mechanical, thermal, and electric
behaviors fully coupled. Both in-plane displacement and temperature fields through the thickness are constructed by
superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the
thickness is assumed in the out-of-plane displacement field in order to consider transverse normal deformation. Linear
zig-zag form is adopted in the electric potential. The layer-dependent degrees of freedom of displacement and tem-
perature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity con-
ditions as well as bounding surface conditions of transverse shear stresses and transverse heat fluxes. Thus the proposed
theory is not only accurate but also efficient. Through the numerical examples of coupled and uncoupled analysis, the
accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of fully
coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loads combined.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, development of integration of piezo-electric materials to composite structures is paid special
attentions due to their potential applications to vibration suppression, shape control, noise attenuation and
precision positioning. Complexity and full thermo-electric-mechanical coupling of smart composite
structures requires efficient and refined models to predict mechanical behaviors under thermal environ-
ments.

In the early stage of the development of models, classical/first order shear deformation theory has been
employed to predict mechanical behavior of embedded or surface bonded piezo-electric layers (Mindlin,
1968; Tiersten, 1970; Crawley, 1987; Ha et al., 1992; Lee, 1990; Reddy, 1999). However, for the accu-
rate prediction of static and dynamic behavior for general layup configurations of adaptive laminated
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structures, classical and first order shear theory are not adequate. Thus higher order theories with smeared
displacements and layerwise electric potential fields (Mitchell and Reddy, 1995; Franco Correia et al., 2000)
and full layerwise theories (Saravanos et al., 1997) have been developed. The smeared theory is not enough
to describe the deformation behavior through the thickness because it cannot satisfy static continuity
conditions at the interfaces between layers. Layerwise theory can adequately describe the deformation
behavior through the thickness but it is not computationally efficient because it employs a large number of
degrees of freedom which depend upon the number of layers (Reddy and Robbins, 1993, 1994). Carrera
(2003) gives a historical review of the zig-zag theories for multilayered plates and shells.

Constitutive equations of most plate theories developed until now are based on the plane stress
assumption. They include transverse shear deformation effect but neglect transverse normal deformation
effects. It has been well known that the zig-zag pattern of displacement through the thickness under the
plane stress assumption provide accurate prediction of deformations and stresses of laminated plates under
mechanical loadings (Cho and Parmerter, 1992, 1993; Toledano and Murakami, 1987; Di Sciuva, 1987).
However, in thermo-mechanical problem, even in moderate thick plate configurations, the transverse
normal deformation effect cannot be neglected since the effect of out-of-plane thermal deformation is
equally important compared to those of the in-plane thermal deformations (Ali et al., 1999). In addition,
for the complete analysis of adaptive composite laminates under thermal environments, full coupling effects
between thermal-mechanical-electricity should be considered for the reliable analysis. Chattopadhyay and
co-workers (2000) used a finite element model based on the smeared cubic higher order theory to analyze
the smart structures with the full coupling of thermo-mechanical-electricity. However, smeared theories are
not adequate in the prediction of deformation behavior and layerwise models and 3-D solid models are
computationally too expensive. Thus it is still required to develop accurate and efficient model which can
predict the static and dynamic behaviors of smart structures under thermo-electric-mechanical coupled
situations.

In the present study, an efficient and accurate higher order zig-zag theory for smart laminated plates is
developed. To predict reliable deformation behaviors, transverse normal as well as transverse shear
deformations are considered. For the efficient evaluation of the mechanical behaviors, transverse shear
stress conditions are pre-imposed in the displacement field to reduce total active degrees of freedom. The
temperature field is also obtained by superimposing linear zig-zag field into the global smeared cubic field.
The layer-dependent temperature degrees of freedom are suppressed by imposing top and bottom surface
thermal conditions as well as interface transverse heat flux continuity conditions. The formulation includes
full coupling between thermo-mechanical-electric behaviors. Even though the developed theory is a two-
dimensional plate version, full three-dimensional constitutive equations are used for the accurate prediction
of the deformation under thermal and electric loads combined.

The developed theory does not have layer-dependent degrees of freedom of displacement field and
temperature field but it has layer-dependent degrees of freedom for electric potentials in order to describe
arbitrary distributions of electric potential through the thickness of smart structures.

2. Formulation

The Helmholtz free energy may be written as follows and it can be found in the paper of Dokmeci (1980)
and more recently Haozhong et al. (2000):

F(Sl’j,Ei, 0) = %C,‘jk]gijsk] — eijkE,'Sjk — %b,jElEj — kljesij — d;E,v@ — %argz (1)

In the above equation ¢;;, E;, and 0 are the components of the strain tensor, the electric field vector, and the
temperature field vector respectively. The coefficients Cy, e;, and b;; correspond to the elastic constants,
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the piezo-electric constants, and the dielectric permittivity. The quantities k; and d; are the thermal-
mechanical and the thermal-piezo-electric coupling constants respectively. ar is defined as Cg/Ty. Here, C
and Tj are the heat capacity and the initial temperature.

The constitutive equations for fully coupled thermo-mechanical-electric materials are given as,

oF

% = 3. Cijuen — eylbr — kij0 ¥
8,'1'
oF
Dy = =55 = et + by + dif 7
oF
§=- 0 kijeij + diE; + ar0 Y

where ¢;; and D; are the components of the stress tensor and electric displacement vector. S denotes en-
tropy. 0 = T — Tj is the temperature rise from the initial reference temperature 7. E; is the components of
the electric field vector. b;; is the dielectric permittivity and k;; and d; refer to the thermal-mechanical and
the thermal-piezo-electric coupling constants.

In the case of considering partial coupling, the constitutive equation given in Eq. (2) is only used for the
analysis. Based on linear piezo-electricity, E; can be expressed from a scalar potential function ¢ as follows:

Ei=—¢, (i=123) (5
Infinitesimal displacement and strain relationship is used and it is given as,
&y = 5(uij + 1) (6)

The configuration of the smart laminated composite plate is shown in Fig. 1.
The governing equations are now derived using the variational principle, assuming no body force, as
follows:

lo l
6717” = 8(]4 + 6(]3 + 6F1 = —/ /(pUISZ/l, + 'yu, 614,‘ + O'l:jSEiJ‘)dle‘ +/ / t,5u,det =0 (7)
0 Vv 0 JS

ty ty
Sy = OF + OF = —/ /D,-Sd)‘,-dth—k/ /q58¢det —0 8)
0 vV 0 S
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Fig. 1. Configuration of the smart structure laminated composite plates.
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where m,, 7y, and 7y are energy functionals for the elastic, electrical, and thermal field, respectively. u; is the
displacement vector and #; and ii; are the first and second time derivatives of the displacement vectors. The
quantity V is the laminate volume, and the quantity ¢, is the time span for the dynamic deformation. p and y
are the density constant and the damping constant of material. The quantities ¢ and g, gr are the applied
surface traction, the applied charge density, the applied heat flux respectively. x;; denotes the thermal
conductivity. In Eq. (9), S is the entropy and S is the derivative of § with respect to time.

For efficient modeling without losing accuracy in the present study, a fully coupled higher-order zig-zag
theory is proposed. A zig-zag higher order in-plane displacement field is obtained by superimposing zig-zag
linear field to the globally cubic varying field. In order to include the transverse normal effect which is
significant in thermo-mechanical problems, the out-of-plane displacement field may be assumed to in-
dependently in each layer. However, for the simplicity and efficiency in the present study, the out-of-plane
displacement field is assumed as globally parabolic form through the thickness.

The starting displacement field can be written as follows:

N—1
“a(xﬁvzv t) = uZ(xﬁvt) + l//x(x,;,t)z + éa(x/h t)zz + (Paz(x/f’ t)Z3 + ZS:(X[;,I,‘)(Z _Zk)H(Z - Zk) (10)
k=1

Uz (Xyy 2, 1) = W(xy, 1) + 71 (g, 1)z 4 12 (Xy, t)22

where H (z — z;) is a Heaviside unit step function. 4% and w represent the in-plane displacement and the out-
of-plane displacement from the reference plane. y, are the rotation of the normal about x, axes.

A schematic configuration of the general lamination layup and in-plane displacement field is shown in
Fig. 2. By applying top and bottom surface transverse shear free conditions, the following two set of
equations are obtained.

Xu
y t Zo
(1)
]
Z1
1 2
/Si\ dij)
Z2
2
Sa .
h /<\ :
N-2 1 ’
/S(O?\ Q(;\L )
ZNA
N- (N)
/QO\ |
3 ZN
4
v

Fig. 2. General lamination layup and in-plane displacement field configurations.
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Vazlemg =W, F Wy =0

N—1 1 1
Vol = Vot W #2804 30,07+ Sh Wt riah gl = 0 .
=1
which, reduces to the following equations.
'701 = Wy
N=1 (12)
_ 2 k
T {3%;1 +;S NN R }
Transverse shear strains can be expressed as,
N-1 Sk
Vo3 = — 3(p1h+z + i+ rah pz+ 30,2 + ZSkH (z—z4) + F1az + 12,2 (13)
=1 =1

Applying transverse shear stress continuity conditions at the interfaces between layers, the change of
slope S¥ can be determined in terms of the primary variables of the reference plane.

Sy = dy, ¢, + bl 2, 14
ay Py T2

where S¥ is the change of slope at each interfaces. The detailed expression for the coefficients a* , b* and the
derlvatlon of Eq. (14) are given in the Appendix A. To avoid more complexity of the dlsplacement ﬁeld the
transverse normal stress continuity conditions through the thickness are not imposed in the present modeling.

Substituting of Eqs. (12) and (13) into Eq. (10), the final displacement field reduces to the following form.

N-1

uy(xp,z,1) = uy(xp, 1) — wy(xg, 1)z — W {3(/)/12 + Z dy, + b ray) F (X, Oh 4 raq(xp, t)h2}22

N-1
+ @, (x5, 0)2° + Z:(al;},(p7 + biyrz_y)(z —z)H(z — z)

=1
U3 (%Xy, 2, 1) = WXy, 1) 4+ 71 (X, £)2 + 12 (3, £)2°

(15)
The variables in the final displacement field are defined only at the reference plane. The primary variables
are ug_, w, ¢,, 1, r2. Thus the number of the primary variables does not depend upon the number of layers.
Similar to the displacement field construction, the temperature field through the thickness of the plate is
obtained by superimposing linear zig-zag field onto the global cubic smooth field. The methodology for
imposing transverse shear continuity conditions in Cho and Parmerter (1993) was employed and also

transverse heat flux continuity are applied in the similar line of thought. The starting temperature field can
be written as follows:

N=1
0(xp, 2,1) = Og(xp, 1) + 01 (xp, 1)z + Oa(xp, )2 + O3 (x5, 0)2° + > 0% (xp, 1) (z — 20)H(z — z2) (16)
A schematic of temperature profile is shown in Fig. 3. In general, the plate may be subjected to tem-
perature and heat flux loads at both top and bottom surfaces. Thus the four different sets of thermal
boundary conditions on both surfaces are expressed as

1
—K30z=¢q atz=0
Set 1 {_K%szqb . (17a)
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Fig. 3. Temperature field configurations through the thickness.

—Kk0z=¢q atz=0
OZT[ atZ:()

Set III {0 T, atz=h (17¢)
OZTU atZZO

sty { —k50.=qy atz=h (17d)

where ¢, and g, indicate the heat flux applied on top and bottom surfaces, respectively. «’; denotes the
thermal conductivity in the thickness direction in the ith layer. T, and T}, are the prescribed temperature
values at the top and bottom surfaces. Layer-dependent temperature variable ¢ is determined by the heat
flux continuity condition at each interface between layers.

ka _ Ck63 +Bk92 +dk (18)

where C* and B* and d* are functions of heat conduction material properties and thickness of the layers.
The detailed expression of Eq. (18) is given in Appendix B. Coefficients f}, 1>, f3, f4 in Appendix B are
tracing constants. The tracing constants fi, f>, f3, fu are matched to the sets of bounding surface boundary
condition as shown in Table 1. For example, Boundary condition set I in Eq. (17a) is given as f; = 1 and
f> = f3 = f4 = 0. Final temperature field is expressed in terms of three primary variables 6y and 6, and 6; in
the reference plane and the prescribed heat fluxes and/or prescribed temperatures at top and bottom sur-
faces.

Substituting thermal boundary condition at the top and bottom surfaces of Eq. (17) into Eq. (16), final
four expressions for the temperature field consistent with four different set of boundary conditions given in
Eq. (17) can be written as follows:
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Table 1
Sets of temperature boundary conditions
Set I Set II Set 111 Set IV
fi 1 0 0 0
1 0 1 0 0
S3 0 0 1 0
fa 0 0 0 1
1
H = 90__12__ ﬁ__+363h2+20% 2+ 0,2 JrZ@sz—zk)H(z—zk) (19a)
K33 2h | kY, K = =

0—T.,+fh 0,1% — 03h* — ZHS"h ) - = I 40,2 + 0,2 +Zes (z—z)H(z—z)  (19b)

33 k=1
B T, N-1 N-1
=T, + { 7*’ — Lo — 05k = 0" (h - zk)/h}z + 0.7+ 02 + )0 (z—z)H(z—z) (19)
k=1 k=1
_ N-] N-1
0=T,+ { _K—_zez h—30;h* — ZQSk}z+02zz—|—(93z3 +) 0z —z)H(z - z) (19d)
33 k=1 k=1

The unified temperature field using the tracing constants f1, f>, f3 and f; are given as the following single
equation (20).

N-1

0= 1 +f2{7b o h = 0 — 030 = 0% (h —zk)} + (s + ST+ +fz){ —K—z}
33

k=1 33

T N-T N—1
+f3{7b—7—02h 01 —ZO“"(h—zk)/h}z+f4{—3—;—2()2}1—303112—20‘*" z

k=1 33 k=1

1 qb 2 k
2h{ i 4 39,02 + Zes

K3 33 =1

+ { 2 0% (z — Z)H(z — zk)} (20)

+ /i + (o + f5+ 1£)(0:2) + 0,2

It must be noted that the higher order temperature field defines a non-uniform zig-zag temperature
distribution through the thickness of plates. The functions 6y(x,y) and 6(x,y) define the in-plane tem-
perature variations. It is important to note that although a linear temperature field can address the in-plane
temperature distribution, it cannot satisfy the surface thermal boundary conditions nor the heat flux
continuity conditions at the interfaces between layers. Therefore, temperature variations through the
thickness, which produce the most important bending deformation, cannot be modeled accurately by the
linear temperature field nor smooth cubic field. The present temperature field given in Eq. (19) can describe
accurate and simple distribution through the thickness and the pattern is consistent with the cubic zig-zag
in-plane displacement field given in Eq. (15). It should be emphasized that if the adjacent layers have severe
changes of thermal material properties like sandwich plates or hybrid composite plates, the temperature
field given in each equation (19) can predict accurate but significantly different results from those of
smeared temperature fields.
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The expressions for the electric potential function can be written as follows

N
TRHEDY {d’(()k)(xm 0+ ¢\ (g, 1)z — Zk—l)}{H(Z —z1) —H(z—z)} (21)
=1
The description of the electric potential ¢ (x4, z, ) is expressed as layer-dependent form using linear zig-zag
field through the thickness. Two degrees of freedom are required to express electric potential ¢ in each
piezo-electric layer. Since the piezo-electric field exists only in the piezo-electric layers, the formulation of
the electric potential is not applicable continuously through the thickness. Even though the layer-dependent
potential field is assumed through the thickness, the number of piezo-layers is relatively small compared to
the total number of layers. Thus this layer-dependent electric potential field does not increase the number of
degrees of freedom significantly. Variational functional based on Egs. (15) and (19)—-(21) can be constructed
for general materials with fully coupled constitutive relations given in Eqs. (2)-(4). The equilibrium
equations and boundary conditions can be derived from the Hamilton principle. The fully coupled gov-
erning equations for the proposed deformation, temperature, and electric field are given here.
Equilibrium equations are derived as,

Su : Nyp s — ity — yit, = 0 (22a)

Sw : Mg gy — pils — il + P =0 (22b)

0py, : Rupp = Vo =0 (22¢)

8ri N3 — %Rfﬁ{,m = g (22d)

8ry 1 2Ms + Ty gy + Ly = — ghz (22¢)
(k) S 0(k) 0(k)

8y : ;F = —q) (22f)
(k) Y 1(k) 0(k) 1(k)

81" : ZF - ;Y =g (22¢)

800 : Ny + Vi — T = —(qu+ qv) (22h)

e F D)

. 1 - .
+3( M) + TH<2>{ - <3h2 5 C") } ~ (R +v) + 1)
=1
—1 N-1 ok N-1 .
_ch< aﬁﬁ+Q/fﬁ)+ZCk(Qa +S§1>+ZC1‘E1‘H¢

k=1

:qb{ 5 <3h2+Zc">h2+h*+Nick —zk)} (22i)

k=1
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Boundary conditions are given as,

N,gvp =0 or u? prescribed

M. pv, =0 or w prescribed
M,pvg =0 or w, prescribed
R.pvg =0 or ¢, prescribed
%Rij{ﬂvd =0orr prescribed
%Rijg)vﬁ =0orr, prescribed

(I + Jupp)ve = 0 or r, prescribed
Jupvp =0 or rp, prescribed
F'®y, =0 or ¢{ prescribed

F'®y, =0 or ¢\ prescribed

o

(Njj + Vi )vg or 0y  prescribed

1 H

H(2) H(2) 2 k H(3) ®3)

(Ruﬁ —|-Vﬁ ){__Zh <3h + E C>}v,;—|—(Rxﬁ +Vﬁ )vlz
N—1

+ Z (ng + @;H{) vg or 03 prescribed

k=1

The generalized stress resultants are shown in Egs. (22) and (23) are given in Appendix C.

1339

(23a)

(23b)

(23¢)

(23d)

(23e)

(23f)

(23g)

(23h)

(23i)

(231)

The field variables are assumed to have double trigonometric series for simply supported boundary

condition as follows.
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= Ucos™xsin"y

mn

=) Vsin™xcos"y

mn

w= ) Wsin"2xsin’ky
mn 0y = Z@O sin % x sin %F y
ZQ} cos™Zx sin”Fy

=y
I

S
|

_ mn ’
0; = Z@; sin % x sin 2% y

m,n

292 sin % x cos 'y

=D R;sin”Zxsinty

m,n

= D Rysin”xsin’Fy

m.n

¢y = > Posin”xsin’Fy

m.n

(24)

<!
Il

=) @ sinxsin’ty

m,n

ty = ZT3 sin 2% x sinF y

ZQZ sin 2% x sin “F y

= ZQl sin % x sin 2% y
m.n

= ZQb sin % x sin 7F y

m,n

i
I

(25)

where #; expresses traction in z direction. In order to obtain the solution of equilibrium equation, the above
field variables equations (24) and (25) are substituted into Egs. (7)—(9). Final governing equation for steady
state can be written as follows:

K Kutl) Ko 1:4:
Kyu Koy Koo | @ p = {F } (26)
Koo Kog Koo 0

where i, (}5, and 0 are the displacement variable vector, the electric potential variable vector, and the
temperature variable vector. The detailed expressions of the coefficient K are omitted for the limited space.
The field variables are obtained by solving Eq. (26).

3. Numerical examples

Constitutive relations given in Egs. (2)—(4) account for full coupling between mechanical, thermal and
electric fields. Egs. (5) and (6) are used to replace the strains and the electric fields in Egs. (2) and (3) by their
expressions in terms of the displacements and electric potentials. Eq. (4) may not be used for steady-state
problems.

The decoupled theory is obtained by neglecting governing equations given in Egs. (8) and (9) and
neglecting the temperature and electric terms given in Eq. (7). The temperature change and the electric field
are treated as external loads in the decoupled theory. The response of the decoupled theory has been studied
in our previous work (Cho and Oh, 2002). The previous study (Cho and Oh, 2002) demonstrated that the
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Piezoelectric Sensor

Mechanical loading

[ P(sensor)/0/90/0/P(actuator)

Piezoelectric Actuator a/h=4

Fig. 4. Plate under mechanical and electric loading.

Table 2

Material properties of the graphite-epoxy and PVDF layer
PVDF layer Graphite—epoxy layer
E\=E=E= 2 % 10° (Pa) E, = 172.37 x 10° (Pa)
v=0.29 E, = E3 = 6.895 x 10°(Pa)
e = ez = 0.0046 (C/m?) Gy = Gi3 = 3.4475 x 10° (Pa)
€33 = €y = €15 = 0 G23 =1.379 x 109 (Pa)
by = by = by; = 0.1062 x 10~° (F/m) v=0.25

b]] = bzz = b33 =8.85x 10712 (F/m)

Table 3
Displacement and stresses for mechanical-electric coupling load comparison between the present and the exact solution (mechanical—
electric coupling problem)

N W (+h/2) a. (0) a, Gy (0) = [ [
(+2h/3) (+h/2) (+h/2) (+h/2)
V=0V
4 Exact (Ray, 1993) 1.99 ~0.754 0.532 0.049 0.256 0.217 0.492
PT 1.94 ~0.837 0.583 0.049 0.238 0.229 0.498
10 Exact (Ray, 1993) 0.774 ~0.589 0.284 0.0288 0.357 0.123 0.499
PT 0.751 -0.592 0.291 0.0288 0.356 0.124 0.499
100 Exact (Sheikh, 0.433 ~0.545 0.181 0.021 0.394 0.083 0.5
2001)
PT 0.434 ~0.548 0.181 0.021 0.394 0.083 0.5
V=100V
4 Exact (Ray, 1993)  —-31.56 11.78 -21.24 -0.728 -3.625 ~0.910 -6.68
PT -30.6 13.03 -25.10 -1.153 ~3.606 -2.163 -8.363
10 Exact (Ray, 1993) -2.35 1.48 -2.34 -0.058 ~0.683 0.336 -0.878
PT 222 1.49 —2.43 -0.072 ~0.686 0.305 -0.932
100 Exact (Sheikh, 0.411 ~0.514 0.158 0.021 0.382 0.086 0.486
2001)
PT 0.412 -0.518 0.158 0.021 0.382 0.086 0.485

The non-dimensional parameters: (W) = w(100E7)/(qohS*), (4,%) = (u,v)(100Er/qohS?), (61, Gy, Tey) = (0%, 0y, Oay)/q0S>
(G2, 0)2) = (042, 0,2)/q0S, (G2) = —(02)/q0S and S = a/h.
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1.20 — 1.20 —
. [piezo(s)/0/90/0/piezo(a)] - [piezo(s)/0/90/0/piezo(a)]
1.00 — 1.00 —
0.80 — 0.80 —
0.60 — 0.60 —
= ——  stress zx
< 7 ) T G stress zy
ﬁ 0.40 — stress xx 0.40 —
. ostressyy || e
1 stress xy 7
0.20 — 0.20 —
0.00 — 0.00 —
-0.20 T I T I T I T l T l T I T I T | T | T I -0.20 T I T l T l T I T I T l T l
-1.00 -0.80 -0.60 -040 -0.20 0.00 0.20 040 060 080 1.00 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30
(a) in-plane stresses (b) transverse shear stresses
1.20 — 1.20 —
4 [piezo(s)/0/90/0/piezo(a)] . [piezo(s)/0/90/0/piezo(a)]
1.00 — * ,,L 1.00 —
4 o4 4
¥4
0.80 | Vo ——  stress xx 0.80 —|
1.: e stress yy
-1 i ,'4 —afdrem  stress xy 1
0.60 — g 0.60 —
< i 4 < 4
N 1 N
0.40 — P 0.40 —
. . —— stress zx
—(—  stress zy
0.20 — 0.20 —
0.00 —H 0.00 —
IR EELE EELE LI LN BRI N N BN LA R IR L L L N N NN B L
-30.00 -25.00 -20.00 -15.00 -10.00 -5.00 0.00 500 10.00 15.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00
(0 in-plane stresses (d) transverse shear stresses
1.20 —
5 [piezo(s)/0/90/0/piezo(a)]
1.00 —
0.80 —
T —— V=100 volt
0.60 — e V=OvOIt
< -
N
0.40 —
0.20 —
0.00 —
R I L EL Y ER ) B BN L B
-12.00 -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00
(e) transverse normal stress

Fig. 5. (a) In-plane stresses (V7 = 0 V), (b) transverse shear stresses (¥ = 0 V), (c) in-plane stresses (V' = 100 V), (d) transverse shear
stresses (V' = 100 V) and (e) transverse normal stresses.
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transverse normal deformation effect can not be neglected under thermal and electric loads. In the present
numerical examples, three types of coupled problems are considered. They are mechanical-electric cou-
pled problem, mechanical-electric coupled problem under thermal loads, and fully coupled thermo-
electric-mechanical problem. In the numerical example, the coordinates x and y indicates x; and x,,
respectively.

3.1. Mechanical-electric coupledluncoupled problems

Simply supported square plate with [piezo(sensor)/0/90/0/piezo(actuator)] layup is considered. The
mechanical loading is doubly sinusoidal and it is applied at the top bounding surface. The schematic of
the geometry and loading conditions is shown in Fig. 4. The material properties for this case are given in
Table 2. Mechanical load is 1 Ib/in.? and it is applied at the top surface of the plate. The voltage V' = 0 and
100 V are applied at the piezo-actuator located at the bottom of the laminate. Out-of-plane displacements
and all the stress components through the thickness for various thickness ratios are given in Table 3. The
3-D elasticity solutions for mechanical-electric coupling problems can be found in Ray et al. (1993) and
Sheikh et al. (2001). And it is also given in Table 3 for the comparison. The detailed through-the-thickness
stress distributions for thick laminates (S = 4) are depicted in Fig. 5. Same non-dimensionalization has been
carried out for Table 3 and Fig. 5.

In the thick plate (S = 4), out-of-plane displacement has parabolic pattern through the thickness and the
prediction of the present higher order zig-zag model correlates very well with the exact elasticity solutions.
In moderate thick case (S = 10), the deflection is almost uniform through the thickness. Once more, the
deflection of the present theory agrees well to the elasticity solution as shown in Table 3.

The in-plane stress distributions through the thickness are shown in Fig. 5(a) and (c). When the voltage
V' =100 V is applied, the maximum in-plane stresses change their sign.

Transverse stresses are depicted in Fig. 5(b), (d), and (e). Transverse shear and normal stresses are
obtained by integrating 3-D local stress equilibrium equations through the thickness of laminates. In the
case that the voltage is applied in the actuator layer, the transverse shear stresses of the piezo-sensor layer
near the top surface, varies severely to satisfy bounding surface free traction conditions. Applied voltage in
the actuator layer in the considered layup configuration amplifies the magnitude of the transverse shear and
normal stresses significantly.

Piezoelectric Actuator
— ~ T .
Z(IJ):TW;“‘“EJ’ On Top Surface X

>

[90/0/90/0/0/90/0/90/Piezo(actuator)]

p— T,(xy)= fsinixsin% y On Bottom Surface
a

7 T=50°C
Y

Fig. 6. Plate under electric loading and uniform thermal loading.
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3.2. Mechanical-electric coupling under thermal loads

Two cases are considered in mechanical-electric coupling problem under thermal loads. The first case is
for the laminate with piezo-actuator attached on the bottom surface. Fig. 6 shows a schematic of square
plate with unsymmetric [90/0/90/0/0/90/0/90/piezo(actuator)] layup. Top and bottom bounding faces are
under the uniform temperature rise up to 50 °C. Sinusoidal temperature distributions are considered along
the in-plane dimension and they are given in Fig. 6. Boundary conditions are all simple-supported. Fig. 7
shows the deflections and stress distributions under various voltage applied. The out-of-plane displacement
is shown in Fig. 7(a). The out-of-plane displacement is almost constant through the thickness of the plate.
In the zero voltage applied, the plate is deflected in the upward direction. When small voltage (V' = 100 V)
is applied, the deflection becomes smaller compared to that of the case no voltage is applied. When high
voltages (¥ =200 and 300 V) are applied, the direction of the deflection is changed from upward to
downward direction. This observation indicates that the deflection shape can be effectively controlled by the
applied high voltage in piezo-actuator layers.

The variation of in-plane normal and shear stresses through the thickness are shown in Fig. 7(b) and (c).
As shown in Fig. 7(b), the maximum bending normal stress (o,,) changes its sign from tension to com-
pression which is consistent with the change of the direction of deflection. The maximum in-plane shear
stresses are also significantly changed as the applied electric voltage is getting higher. Transverse shear
stress (o) is plotted in Fig. 7(d). As the applied voltage gets higher, the transverse shear stresses change
direction. Interlaminar normal stresses change also direction as the applied voltage is getting higher.

The second case is for the laminate with the attached top face piezo-sensor and the attached bottom face
piezo-actuator. At the bottom surface, uniform temperature —50 °C is imposed and at the top surface,
uniform temperature rise 50 °C is imposed. The layup configuration is [piezo(sensor)/0/90/0/0/90/0/
piezo(actuator)] and schematic of the plate is shown in Fig. 8. Since electric voltage ¥ = 100 V is applied
only at the bottom surface actuator, the normal stress o,, has the maximum value near the bottom layer.
However, the maximum in-plane shear stress appears near the bottom surface even though the magnitude
of the shear stress is only 10% of the maximum bending stress as shown in Fig. 9(a) and (b). The transverse
shear stress shows zig-zag pattern through the thickness as shown in Fig. 9(c). The transverse normal stress
also oscillates significantly through the thickness as shown in Fig. 9(d). Fig. 10 shows the difference between
the predictions by the present higher order zig-zag theory and HOT (smeared higher order theory). HOT
cannot provide accurate results for thick composite plates. The results of uncoupled zig-zag theory show
more accurate stress prediction than HOT does. However, the prediction of the uncoupled cubic zig-zag

Piezoelectric Sensor

f(x._y):fsin%xsin%y On Top Surface X
[ P(sensor)/0/90/0/0/90/0/P(actuator)]

T(x, =T, sinzxsinlfy On Bottom Surface
a h

Piezoelectric Actuator [, =50°C 7, =-30°C

z

\

Fig. 8. Plate under electric loading and thermal gradient loading.
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Fig. 9. (a) In-plane stress (0../E)10%, (b) in-plane shear stress (o,,/E.)10%, (c) transverse shear stress (0../G,,)10° and (d) transverse
normal stresses o...

theory shows discrepancy from that of coupled one because the mechanical energy is transformed into
electric and thermal energy in the coupled theory but such energy transformation cannot occur in the
uncoupled theory.

3.3. Fully coupled thermo-electric—mechanical problem

For the analysis of fully coupled problems, a problem with the prescribed bounding surface heat flux (set
I) of Eq. (17a) is considered. The schematic of the problem is shown in Fig. 11. Heat flux ¢, = 1000 W/m? is
applied on the top surface of the plate and bottom surface is adiabatic, i.e. g =0 W/m?. The layup
configuration is given as [90/0/90/0/0/90/0/90/piezo(actuator)]. The material properties for this case are
given in Table 4. This properties were employed from Haozhong et al. (2000).
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Fig. 10. (a) In-plane stress (o../E.)10*, (b) in-plane stress (¥ = 100 V), (c) transverse shear stress (o.,/G,,)10°, (d) transverse shear
stress (V7 = 100 V), (e) transverse normal stresses o.. and (f) transverse normal stresses (V' = 100 V).
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Fig. 11. Plate under electric loading and heat flux loading.

Table 4
Material properties of the graphite—epoxy and PZT layers
PZT layer Graphite-epoxy layer
E| = E, = E; = 63 x 10° (Pa) E; = 144.23 x 10° (Pa)
G12 = G13 = G23 =24.6 x 109 (Pa) E,=E; = 9.65 x 109 (Pa)
v=0.28 G = Gi3 = 4.14 x 10° (Pa)
oy = oy = o33 = 0.9 x 107 (/°C) Gy = 3.45 x 10° (Pa)
d3; = dz = 150 x 10712 (m/V) v=03
dz3 = —336.8 x 10712 (m/V) o = 1.1 x 1076 (/°C)
dyy =0 Oy = 033 = 252 %107 (/OC)
d15 =0 K1 = 4.48 (W/m°C)
b]] = bzz =153 x 1079 (F/m) Ky = K33 = 3.21 (W/m°C)

by = 15.0 x 10°° (F/m)
d; =20 x 107 (C/m? °C)
Ki] = K3 = K33 = 2.1 (W/m°C)

The temperature profile through the thickness is obtained by solving coupled heat equation, equilib-
rium equation and electro-static equation. It shows a smooth distribution through the thickness except
the piezo-actuator layer, where the high temperature gradient is observed. If we consider the case with
severe thermal property changes through the thickness such as the sandwich or hybrid composite plate,
the zig-zag assumed temperature field in the present theory may strongly demonstrate its efficiency and
accuracy.

The in-plane normal stresses and transverse shear stress distribution are shown in Fig. 12(b) and (c).
Once more, complicated zig-zag patterns are shown in the transverse shear stresses through the thickness.
The transverse normal stress distribution is depicted in Fig. 12(d). It shows smooth parabolic shape through
the thickness. Fig. 12(e) depicts the out-of-plane displacements through the thickness for fully coupled case
and decoupled case. Once more, the parabolic shape of out-of-plane displacements is observed in both
cases. Thus the assumption of the present theory on the out-of-plane displacement is appropriate. The
results indicate that the coupling effects play an important role in smart composite applications under
thermal loads. The deflection predicted by the decoupled theory is always larger, compared to the coupled
theory by the amount of 10-20%.



M. Cho, J. Oh | International Journal of Solids and Structures 41 (2004) 1331-1356

1.20 — 1.20 |
7 [90/0/90/0/0/90/0/90/p(a)] E [90/0/90/0/0/90/0/90/p(a)]

1.00 — 1.00 —

0.80 — 0.80 —

- i —@— heat flux=500

0.60 — 0.60 — e heat flux=1500
F—

N 1 N 1

0.40 — 0.40 —H

0.20 — 0.20 — .\. m"mﬂﬂ

0.00 —H 0.00 —

T T T T T T T T T ] -0:20 T T ' 1T T 1T ' 1T ' 1

148.00 150.00 152.00 154.00 156.00 158.00 160.00 162.00 164.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00
(a) Temperature (b) normalized stress xx
1.20 | 1.20 —
. [90/0/90/0/0/90/0/90/p(a)] . [90/0/90/0/0/90/0/90/p(a)]

1.00 — 1.00 —|

0.80 — 0.80 — .

0.60 —| 0.60 — N“%

—&@— heat flux=500
ﬁ T - heat flux=1000 % 1 -N‘xﬁ
0.40 — ey heat flux=1500 0.40 —|
0.20 — 0.20 — —&@— heat flux=500
i i -~ heat flux=1000
w5 heat flux=1500

0.00 — 0.00 —

AR IR LA LA INL B DL LA IR I L o0 T T T T T T T T
C) -40.00 -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 (d) -5.00E+3  0.00E+0 5.00E+3 1.00E+4 1.50E+4  2.00E+4  2.50E+4
( normalized stress zx stress zz

1.200 —
g [90/0/90/0/0/90/0/90/p(a)]
1.000 — % /
) /
0.800 — (heat flux =1000) /Pﬂ
4 —54— decoupled A
—e— coupled
0.600 —
< i
N
0.400 —
0.200 —
0.000 — E/
-0.200 T T T T T I T | T ]
(e) -6.0E-4 -5.0E-4 -4.0E-4 -3.0E-4 -2.0E-4 -1.0E-4
w

1349

Fig. 12. (a) Temperature field, (b) in-plane stress (o../E.)10%, (c) transverse shear stress (0.,/G,,)10°, (d) transverse normal stresses o..
and (e) out-of-plane displacement w.
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Fig. 13. Deflection top reference surface of coupled and uncoupled theories.

Fig. 13 shows the non-dimensional transverse deflection. vs. the variation of the thickness ratio. The
non-dimensional deflections of both the fully coupled theory and decoupled theory decrease as the
thickness becomes smaller. The decoupled model overestimates the deflections about 20% compared to
those of the coupled one. Thus for the purpose of the reliable analysis and design, full coupling effects
between thermo-mechanical-electric behavior need to be considered.

4. Conclusion

A higher order zig-zag theory is developed to enhance the prediction of fully coupled mechanical,
thermal, and electric responses of smart composite plates. By imposing transverse shear stress free con-
dition of top and bottom surfaces and interface continuity conditions between layers, the layer-dependent
displacement variables can be eliminated. In the similar way, by imposing top and bottom surface heat flux
boundary conditions and interface transverse heat flux continuity conditions between layers, the temper-
ature-related variables in each layer are reduced to the temperature degrees of freedom of reference surface.
Thus the final form of displacement and temperature fields has only reference primary variables. Layer-
dependent degrees of freedom come from the electric potential degrees of freedom only. However, the
formulation still keeps the efficiency since the number of the piezo-electric layers is not so large in the
practical applications.

Through the numerical examples of uncoupled responses, it is observed that the transverse normal
deformation effect is not negligible in the situations that electric and thermal loads are applied. The present
theory demonstrated its performance in predicting deformations and interlaminar stresses because it in-
cludes the effect of transverse normal deformation. Coupled and uncoupled analyses under thermal loads
indicate that uncoupled analysis may overestimate the deflections compared to those of the coupled
analysis. The deviation of the results of uncoupled analysis from those of coupled case is up to 20%. Thus
full coupling should be considered in the analysis in case of thermal environments.
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The present fully coupled theory should be implemented in the finite element framework for the practical
thick smart composite plate problem with general geometry, layup, boundary, and loading conditions.
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Appendix A. Transverse shear stress continuity conditions

The transverse shear continuity conditions forz > 0atz=1z,, m=1,2,...,N — 1 (z,, =upper surface of

mth layer) are

63“ ‘z:z,; = 0-3“ |z:z;

These transverse shear continuity conditions at the interfaces can be expressed by the following matrix

equation.

[ ai aip a3
az an as
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(2m — 1)th layer row:

Z— B _ Zm-
Ayp—1,1 = Aom—12 = Aap—13 = **° = -1 m—1 = ( 7 1 + 1)AQ'5'15 17 Dm—1m = 1AQms + AQ’SMS
Zp—
W1l = Q-2 =+ = Qup_IN—] = — IAQ
Zm m— 1
Aop—1I N = Qm—1N+1 = A2p—IN+2 = *°° = Wm—I N4m—2 = ( - )AQ
Zm-1 n—1
A1 N+m—1 = _TAQZS + AQJs
Zm 1

Dm-IN+m = Qm—1N+m+1 = = = Q2p—12(N-1) = AQ

(2m)th row:
Zy Zm
Qo) = Ayup = Qo3 =+ = Aopm—1 = (— TI‘F 1)AQ45 s Qmm = — 1 AQ"’5
Zm n—
DOmm+l = Wmm+2 = = doypN—1 = —TIAQ45 !
Am N = mN+1 = AoamN+2 = **° = A N+m—2 = ( - h_l + 1)AQZ1471
Zm 1 71 Zm—1 m— 1

D N+m—1 = — AQ + AQ447 D N+m = AomN+m+1 = = Aom2(N-1) = — —AQ
These equations are of the form

[A[{S} = [Bi](@1) + [B2] () + [Ci](r21) + [Co] (r22)
where [4]: 2(N — 1) x 2(N = D)[By], [Bi] : 2(N = 1) x 1[Cy], [C1] : 2(N = 1) x 1, [S]: 2(N — 1) x 1, {S} =
4] [Bi)(e) + [A]fl[Bz}(ch) + 4] C(r1) + 4] [Co (r20).

Therefore
k_ k k
Sc{ - Clw(/)}, + bwrz,'y

where, af, = kth row of [4]'[B|], a', = kth row of [4]'[By], @, = (N —1+k)th row of [4]'[B],

db, = (N —1+kth row of [4]'[B), b5, =kth row of [4]'[C], L, =kth row of [4]'[C)]
bk, = (N — 1 + k)th row of [4]'[C}], b5, = (N — 1 + k)th row of [4] '[C).

Appendix B. Heat flux continuity conditions

The heat flux continuity conditions for z >0 atz=z,, m=1,2,...,N — 1 (z, =upper surface of mth
layer) are
qz:z,; = qz:z:;

These heat flux continuity conditions at the interfaces can be expressed by the following matrix equation.
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B Si[AK%3hz,,] +.f2[AK33h2] + /4 [AK%MZ] 3AK33Z }
SilAxSy *3hzy ] + fa[Arly 2h2] + falArly 307) — 3AK3; 22%/ 2
SiARY 3hzy ] + fo[ Ay TR + fu Ay 3R] — 3AkY 2
So[Aks; (= 221)] + f3[=2AK321] + falAx32(h — z1))]
N So[ARE (B = 22,)] +f3[—2AK'§’3 "z1] + fal AR 2(h = z,0))] (05)
SolAry(h = 2z,)] + f3[=2A1%5z,) + fa[Ai2(h — z,,)]
SN (= 22 1)) + =282y 1]+ fulAkly 200 — 2 1)
o=l a3 sl ] o)
m—1| gt lL_L mlz_i ml% m—1 qv
L {ee g ei{a -t ) - enlaes ] nae ]
fifaws 4 +%{%—qf}2m}}+fz{AKas[%—%]}+fs s | + s a2
a1 g LT _ Ty N-1 4o -1 gy
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m+1
where Ax%;, = k%5

(m — Dth layer row: i=1,2,...,m

Vm—1, = fl(

Ym—1m—1 = ﬁ ( -

j=mm+1,...

Vm—1,j :ﬁ (

— K.
-2

1
oo (A ) ) A

Zm—1

1
=ty ) + o (A s = )7 ) + )+

N -1

Zm- 1A Ky l) +f2<AK 'z )%) + fa(=AKE )
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(mythrow:i=1,2,..., m—1

ZVH

h

Tml =Vm2 =Fm3 =" = Fmm-1 :f1<_

1
)AK% /2 (A’C;",%(Zi —h) Z) + fa(—AK) + A,

) (AR + R

SN

Zm m m
Vmm :fl(_gAKy) +f2 (AK33(Zm _h)
j=m+1,...,N—-1

- 1
Fom+l = Vmm+2 = *°° = I'mN—1 :fl ( _%AK’;3> +f2 (AK%(Z} - h)Z) +f4(_AK'3n3)

These equations are of the form
[A{0°} = [C](05) + [B](62) + [D]

where [A] : N—=1)x (N—=1),[B]: N=1)xL[C]:N=1)x1,[D]: (N—1)x 1, []: (N—=1) x 1
{0} = [4]7'[C1(63) + (4] [BI(0) + [4] "' [D]

Therefore
0* = C*0; + B*0, + d*

where C* = kth row of [4]'[C], B¥ = kth row of [4] '[B], d* = kth row of [4] '[D].
Appendix C. Definitions of the resultants
C.1. Resultants

Resultants given in the equilibrium equation (21) and boundary condition (22) are defined as follows.

—i

h . h
[Naﬂ M, Rfj)} RS” = / o[l z 2 Z2dz [N;ﬁ Mw} = / o.5[l(z—2z)|H(z — z;)dz
0 0
h h h
|:V91(1> Vd(2) Q;] = / G3a[z z2 H(Z _Zi) ] dZ, N; = / 033 dZ7 M; = / 633ZdZ
0 0 0
h @ N-1 . 1 @ N-1 1

- __ I — 1 _ @ k) Z () _

J"‘B - 2R0¢/f + ;bm{ B 2hR7lf }’ L= hVO< V& + va’“{ h V/ Qj;}

3 N—-1 1 4
_ p® 2 k (2)
Ra/} = Rocﬁ — Eth/} + aw{ — ERVﬁ + M},ﬁ}

k=1

N-1

1
_ 2 1 k 1
Ve=3V2 =3nr) +> a,/,y{Q{;+hV?<)}

k=1

o

[F? F;}]:/ODO([I z|[H(z — z0) — H(z — z1)] dz, EO:/ODg[H(z—ZO)—H(z—zl)]dZ
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o

[ 0 F;Nﬂ]:/hDau Z)[H(z — zy_1)]dz, F3(N>0:/hD3[H(z—zN_1)}dz

h h
v R R = [0t 2 2l [ @ ] = [t 2 2]
0 0

—Hk —Hk

17y - /Oh(wg,u)(z ~ =M - z)ldz, (0] = /Oh(mgﬁ)(z —z)[H(z — z)]dz

o o o

h
[va  pHe Q*Hk}:/ (ka0.)[z 22 H(z—2z)]dz
0

h h
0 @ sm] = [0z 2 He-w)]d B = [ (ST a)HE -2k
0 0
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